Thomas Roche and Emmanuel Prouff

ANSSI, France — Oberthur Technologies, France

Agence nationale de la sécurité des systèmes d'information

CHES'11, Nara, Japan 26 December, 2011

Overview

Introduction

Framework to prove Higher-Order SCA Resistance and Glitches freeness

From BGW's protocol to secure masking scheme w.r.t. HO-SCA in presence of glitches

Conclusions and Future Directions

SCA Attacks

x, y are sensitive variables: dependent on the secret and on a known value.

SCA Attacks

x, y are sensitive variables: dependent on the secret and on a known value.

SCA attacks

- DPA [Kocher 98]
- CPA [Brier et al. 04]
- MIA, Stochastic, ...

1st-order Masking Schemes

Masking/Sharing Function

1st-order Masking Schemes

Masking/Sharing Function

 $\begin{array}{rcccc} x_0 & \leftarrow & RNG \\ x_1 & \leftarrow & x_0 \oplus x \end{array}$

Works well for Homomorphic functions $(w.r.t. \oplus)$.

1st-order Masking Schemes

Non-Homomorphic functions: combinations of the inputs are necessary.

1st-order Masking Schemes

Non-Homomorphic functions:

- Table re-computation methods
 [Kocher et al. 99]
- Tower Field computations (AES) [Oswald *et al.* 05]

1st-order Masking Schemes

Non-Homomorphic functions:

- Table re-computation methods [Kocher *et al.* 99]
- Tower Field computations (AES) [Oswald et al. 05]

2nd-order SCA attacks [Messerges et al. 00, ...]

HO-SCA Masking Schemes

dth-order schemes

- HW [Ishai et al. 03]
- SW [Rivain *et al.* 10, Faust *et al.* 10, Genelle *et al.* 11]
- Relaxed SMC Protocol

Probing Model

Here the order *d* relates to the # of observed data, w/o notion of time or space location.

HO-SCA Masking Schemes

dth-order schemes

- HW [Ishai et al. 03]
- SW [Rivain *et al.* 10, Faust *et al.* 10, Genelle *et al.* 11]
- Relaxed SMC Protocol
- # of shares

n = d + 1

5/14

HO-SCA Masking Schemes

dth-order schemes

- HW [Ishai et al. 03]
- SW [Rivain *et al.* 10, Faust *et al.* 10, Genelle *et al.* 11]
- Relaxed SMC Protocol
- # of shares

n = d + 1

Soundness [Chari *et al.*] Complexity: $O(\sigma^d)$

Glitches Attacks

Transition Energy in a clock cycle

 E_T

Glitches Attacks

Transition Energy in a clock cycle

Eτ

Idealized model Each gate switches only once. $\hookrightarrow \Pr(x|E_T^{\text{Ideal}}) = \Pr(x)$

Glitches Attacks

Transition Energy in a clock cycle

Eт

Glitches Attacks

Transition Energy in a clock cycle

Eт

Glitches Attacks

Transition Energy in a clock cycle

Eт

Glitches Attacks

Transition Energy in a clock cycle

Eт

Glitches Attacks

Transition Energy in a clock cycle

Eт

- More realistic model Propagation delays. $\hookrightarrow E_T \neq E_T^{Ideal}$
- [Mangard et al. 05]

 $\mathbb{E}[E_T|x] \neq \mathbb{E}[E_T]$

Glitches Attacks

Transition Energy in a clock cycle

Eτ

- More realistic model Propagation delays. $\hookrightarrow E_T \neq E_T^{Ideal}$
- [Mangard et al. 05]

 $\mathbb{E}[E_{T}|x] \neq \mathbb{E}[E_{T}]$

Glitches effects relate power consumption to a combination of the circuit inputs.

1st-order Glitches Free Scheme

[Nikova *et al.* 06,08,10]

Back to classical constraints of SMC e.g. $n \ge 2d + 1$

1st-order Glitches Free Scheme

[Nikova et al. 06,08,10]

Back to classical constraints of SMC e.g. $n \ge 2d + 1$

Necessary Condition

The overall leakage is a linear combination of the sub-leakage.

1st-order Glitches Free Scheme

[Nikova et al. 06,08,10]

Back to classical constraints of SMC e.g. $n \ge 2d + 1$

Necessary Condition

The overall leakage is a linear combination of the sub-leakage.

1st-order Glitches Free Scheme

But still susceptible to 2^{nd} -order SCA.

1st-order Glitches Free Scheme

But still susceptible to 2nd-order SCA. Also susceptible to 2nd-order Glitches attacks.

1st-order Glitches Free Scheme

But still susceptible to 2nd-order SCA. Also susceptible to 2nd-order Glitches attacks.

1st-order Glitches Free Scheme

No simple generalisation of Nikova *et al.* scheme.

 \hookrightarrow Sub-Optimal in the nb of shares when d > 1

Building HO-Masking HO-Glitches Free Scheme

Constraints to prove *d*th-order security

Independence of Sub-Circuits leakage.

 Side-channel information (from Probing and/or Glitches) from any family of *d* Sub-Circuits executions is independent of sensitive variables.

Building HO-Masking HO-Glitches Free Scheme

Constraints to prove d^{th} -order security

► Independence of Sub-Circuits leakage.

Temporal or Spatial Separation.

Side-channel information (from Probing and/or Glitches) from any family of *d* Sub-Circuits executions is independent of sensitive variables.

Building HO-Masking HO-Glitches Free Scheme

Constraints to prove d^{th} -order security

► Independence of Sub-Circuits leakage.

Temporal or Spatial Separation.

- Side-channel information (from Probing and/or Glitches) from any family of *d* Sub-Circuits executions is independent of sensitive variables.
 - \hookrightarrow (Glitches Effects) Any family of *d* Sub-circuits Inputs are independent of sensitive variables.

Building HO-Masking HO-Glitches Free Scheme

Constraints to prove d^{th} -order security

► Independence of Sub-Circuits leakage.

Temporal or Spatial Separation.

- Side-channel information (from Probing and/or Glitches) from any family of *d* Sub-Circuits executions is independent of sensitive variables.
 - \hookrightarrow (Glitches Effects) Any family of *d* Sub-circuits Inputs are independent of sensitive variables.

Secure Multi-Party Computation Protocols

Secure Multi-Party Computation Protocol

How to securely compute a function f over the n shares? [BGW 88] • Secure communication b/tthe Players. • $n \ge 2d + 1$.

Secure Multi-Party Computation Protocol

How to securely compute a function f over the n shares?

[BGW 88]

- Secure communication b/t the Players.
- ▶ $n \ge 2d + 1$.

Data is re-shared before going through the secure channels.

Secure Multi-Party Computation Protocol

How to securely compute a function f over the n shares?

[BGW 88]

- Secure communication b/t the Players.
- ▶ $n \ge 2d + 1$.

Multi-Party Circuits

The Multi-Party Circuit C_f verifies the SMC constraints Players \equiv Sub-Circuits C_{f_i} .

Multi-Party Circuits

The Multi-Party Circuit C_f verifies the SMC constraints Players \equiv Sub-Circuits C_{f_i} .

In our context, there is no limit in the number of observed Sub-Circuits

Multi-Party Circuits

The Multi-Party Circuit C_f verifies the SMC constraints Players \equiv Sub-Circuits C_{f_i} .

In our context, there is no limit in the number of observed Sub-Circuits

[Chari et al. 99]

the complexity of the HO-SCA attack is exponential in the order w.r.t. the noise.

BGW's SMC protocol

Shamir's Secret Sharing Scheme $(n \ge d + 1)$ [Shamir 79]

$$(Z, RNG) \rightarrow P_Z[X] : Z + a_1X + \dots + a_dX^d$$

 $(P_Z, \alpha_1, \dots, \alpha_n) \rightarrow \{P_Z(\alpha_1), \dots, P_Z(\alpha_n)\}$

BGW's SMC Protocol $(n \ge 2d + 1)$ [Ben-Or *et al.* 88]

 $\mathcal{C}_{f_i}'s \text{ inputs: } \{P_A(\alpha_i), P_B(\alpha_i)\}$ $A + B: \qquad P_A(\alpha_i) + P_B(\alpha_i)$ $xA + y: \qquad xP_A(\alpha_i) + y$ $A \times B: \qquad P_A(\alpha_i) \times P_B(\alpha_i)$

- 1

BGW's SMC protocol

Shamir's Secret Sharing Scheme $(n \ge d + 1)$ [Shamir 79]

$$(Z, RNG) \rightarrow P_Z[X] : Z + a_1X + \dots + a_dX^d$$

 $(P_Z, \alpha_1, \dots, \alpha_n) \rightarrow \{P_Z(\alpha_1), \dots, P_Z(\alpha_n)\}$

BGW's SMC Protocol $(n \ge 2d + 1)$ [Ben-Or *et al.* 88]

$$\mathcal{C}_{f_i's \text{ inputs: } \{P_A(\alpha_i), P_B(\alpha_i)\}}$$

$$\blacktriangleright A + B: \qquad P_A(\alpha_i) + P_B(\alpha_i)$$

$$\blacktriangleright XA + y: \qquad \times P_A(\alpha_i) + y$$

$$\vdash A \times B: \qquad P_A(\alpha_i) \times P_B(\alpha_i)$$

BGW's SMC protocol

Shamir's Secret Sharing Scheme $(n \ge d + 1)$ [Shamir 79]

$$(Z, RNG) \rightarrow P_Z[X] : Z + a_1X + \dots + a_dX^d$$

 $(P_Z, \alpha_1, \dots, \alpha_n) \rightarrow \{P_Z(\alpha_1), \dots, P_Z(\alpha_n)\}$

BGW's SMC Protocol $(n \ge 2d + 1)$ [Ben-Or *et al.* 88]

 C_{f_i} 's inputs: $\{P_A(\alpha_i), P_B(\alpha_i)\}$

 $A + B: \qquad P_A(\alpha_i) + P_B(\alpha_i)$ $xA + y: \qquad xP_A(\alpha_i) + y$ $A \times B: \qquad P_A(\alpha_i) \times P_B(\alpha_i)$

BGW's SMC protocol

Shamir's Secret Sharing Scheme $(n \ge d + 1)$ [Shamir 79]

$$(Z, RNG) \rightarrow P_Z[X] : Z + a_1X + \dots + a_dX^d$$

 $(P_Z, \alpha_1, \dots, \alpha_n) \rightarrow \{P_Z(\alpha_1), \dots, P_Z(\alpha_n)\}$

BGW's SMC Protocol $(n \ge 2d + 1)$ [Ben-Or *et al.* 88]

$$C_{f_i}'s \text{ inputs: } \{P_A(\alpha_i), P_B(\alpha_i)\}$$

$$P_A(\alpha_i) + P_B(\alpha_i)$$

$$P_A(\alpha_i) + P_B(\alpha_i)$$

$$P_A(\alpha_i) + y$$

$$P_A(\alpha_i) \times P_B(\alpha_i)$$

BGW's SMC protocol

Shamir's Secret Sharing Scheme $(n \ge d + 1)$ [Shamir 79]

$$(Z, RNG) \rightarrow P_Z[X] : Z + a_1X + \dots + a_dX^d$$

 $(P_Z, \alpha_1, \dots, \alpha_n) \rightarrow \{P_Z(\alpha_1), \dots, P_Z(\alpha_n)\}$

BGW's SMC Protocol $(n \ge 2d + 1)$ [Ben-Or *et al.* 88]

$$\mathcal{C}_{f_i's \text{ inputs: } \{P_A(\alpha_i), P_B(\alpha_i)\}}$$

$$A + B:$$

$$xA + y:$$

$$A \times B:$$

$$P_A(\alpha_i) + P_B(\alpha_i)$$

$$P_A(\alpha_i) + y$$

$$P_A(\alpha_i) \times P_B(\alpha_i)$$

Comparison with Rivain and Prouff's Scheme [CHES 2010]

Method	multiplications	additions
This paper	$4d^3 + 8d^2 + 3d$	$4d^3 + 8d^2 + 7d + 2$
[Rivain <i>et al.</i> 10]	2 <mark>d</mark> ² + 2d	$d^{2} + d + 1$

Method	random bytes
This paper	d(2d+1)
[Rivain <i>et al.</i> 10]	d(d+1)/2

Higher-Order Glitches Free Implementation of the AES using Secure Multi-Party Computation Protocols \Box Conclusions and Future Directions

Conclusions and Future Directions

What has been achieved

- First glitches free HO-masking scheme.
- ▶ New Masking Function: Shamir's secret sharing scheme.

Next Steps

- How to satisfy the separation of sub-circuits.
- Efficient implementations.
- Relaxations w.r.t. leakages models.
 (e.g. reduce random bytes, cf. Nikova et al.)